
EuroCG 2010, Dortmund, Germany, March 22–24, 2010

Convex Hull Of Imprecise Points Modeled By Segments In The Plane

Ahmad Javad∗ Ali Mohades∗ Mansoor Davoodi∗ Farnaz Sheikhi∗

Abstract

Let S be a set of n imprecise points in the plane that
each imprecise point is modeled by a segment. In
this paper, we study the problem of finding a min-
imum perimeter convex hull of S that segments are
either inside this convex hull or intersected by it. We
present the first polynomial time algorithm to solve
this problem in O(n2 log n) time where the segments
are disjoint.

1 Introduction

Computational geometry is a vast area of research
that mostly deals with designing algorithms that work
with exact input data, but in real world problems, due
to devices with limited accuracy, input data might be
imprecise. Therefore, a new class of problems focuses
on designing algorithms which are able to work with
imprecise data. Imprecise data can be modeled by a
region they lie on.

Suppose that S is a set of imprecise points where
each of its points is modeled by a segment in the
plane. We want to find the minimum perimeter
convex polygon that has no segments of S outside.
We assume there does not exist a line which in-
tersects all segments of S. Goodrich and Snoeyink
presented an algorithm that finds a convex polygon
whose boundary stabs a set of parallel line segments,
in O(n log n) time [1]. Meijer and Rappaport al-
lowed the interior and the boundary of the polygon
to stab the set S of parallel line segments, and found
a stabbing polygon of the smallest perimeter, called a
minimumstabbingpolygon of S, in O(nlogn) time [4].
Rappaport proposed an algorithm for the problem of
computing convex hull of a set of disjoint segments,
which is called minimumpolygontransversals, in
O(3kn log n) time [5]. Hassanzadeh showed that al-
gorithm could not work correctly in some cases. So,
he corrected it, resulting in an O(4kn log n) time al-
gorithm, and presented several approximation algo-
rithms to solve that problem as well [2]. Löffler
and van Kreveld studied minimum/maximum perime-
ter/area convex hull of imprecise points where each
imprecise point was modeled by a segment or a square.

∗Laboratory of Algorithms and Computational
Geometry, Department of Mathematics and Com-
puter Science, Amirkabir University of Technology,
{ahmadjavas,mohades,mdmonfared,f.sheikhi}@aut.ac.ir

They also proved the problem of finding maximum
area/perimeter convex hull is NP-hard [3].

No polynomial time algorithms are known to solve
the problem of finding the minimum perimeter convex
hull of a set of segments. In this paper, we present
the first polynomial time algorithm which solves this
problem in O(n2 log n) time.

2 Preliminaries

The algorithm that we present to solve the problem
proposed, is similar to QuickHull algorithm which
computes the convex hull of a point set in the plane.
Our algorithm is an iterative one that in each iteration
computes the convex hull of some special segments of
S by using an unfolding method [2], and then updates
the resultant convex hull regarding the segments that
lie outside it.

Before concentrating on details of the algorithm, we
present some useful concepts. Let P be a set which
includes endpoints of all segments of S, and CH(P )
denote its convex hull.

Theorem 1 Suppose at least one endpoint of each
segment of S lies on the boundary of CH(P ). A
tour MT which visits all segments has the minimum
length, if it intersects the segments in their clockwise
(or counter clockwise) traversal on the boundary of
CH(P ).

Proof. Let s1, s2, , sn be the ordered segments which
are visited in clockwise traversal on the boundary of
CH(P ), and wi be the intersection point of si and
MT . Assume MT does not visit segments in their
clockwise order, so there exist some segments like
si that MT visits it after sj , (i < j). Let MT
be . . . , wi−1, wi+1, wi+2, . . . , wj−1, wj , wi, wj+1 . . . in
clockwise order. If wiwj intersects wi−1wi+1,
and wi−1wiwi+1wj is a convex quadrilateral,
according to the triangle inequality, the tour
. . . , wi−2, wi−1, wi, wi+1, . . . , wj , wj+1, . . . is a shorter
tour, providing a contradiction. Otherwise, if wiwj

does not intersect wi−1wi+1, two cases will be arisen:
either wi−1wi+1 intersects si or does not. If wi−1wi+1

intersects si, we can obtain a shorter tour by replac-
ing the intersection point with wi. On the other hand,
if wi−1wi+1 does not intersect si, so si certainly lies
inside the convex shape (5- or 6-gon) which is con-
structed with si+1, si−1 and a part of the boundary

193



26th European Workshop on Computational Geometry, 2010

of CH(P ). Thus, wiwj intersects either si+1 or si−1.
Similarly, in both situations, we can obtain a shorter
tour by replacing the intersection point with either
wi+1 or wi−1, providing a contradiction. �

Lemma 2 Suppose that at least one point of each
segment of S, lies on the boundary of CH(P ). The
minimum length tour MT which visits all segments
of S, is convex.

Definition 1 Given a set of ordered segments, a min-
imum perimeter tour that visits all such segments is
denoted by MTOS.

Figure 1: Illustration of two choices that exist to select
Qi.

3 Convex hull of segments algorithm

At first, we compute the convex hull of P and denote
it by L0. Then, by a clockwise traversal on L0, we
find all segments of S which intersect L0, and insert
them into a list called SL0. Note that if there exist
some segments that have more than one intersection
point, we insert them only once. We set SL0 to CS1,
and compute the convex hull of the ordered set CS1

by using the following method. In this step, we prune
segments which are not important in the final solution
from CS1. Based on Theorem 1, MT visits every seg-
ment si between si−1 and si+1. Let ai and bi be the
endpoints of si which ai lies on the convex hull. We
will remove si from CS1 if it intersects with bi−1bi+1,
ai−1bi+1 and bi−1ai+1. After each removal, we up-
date CS1 and repeat this process until there are no
segments left to remove.

With respect to Theorem 1, for the ordered set CS1,
MTOS should visit si before si+1. Let a and b be end-
points of si, and c and d be endpoints of si+1. Ob-
viously, MTOS crosses either the quadrilateral abcd
or abdc. Let Qi be the quadrilateral which MTOS
crosses. If either abcd or abdc is a convex quadrilat-
eral, we will select the convex one as Qi. Otherwise, if
both abcd and abdc are non-convex, we will select Qi

as follows. Suppose that the extension of si intersects
si+1. Let b be the nearest endpoint of si to si+1. We
select the quadrilateral that contains the triangle that

lies on the right of the directed segment ab. On the
other hand, if the extension of si+1 intersects si, and
c is its nearest endpoint to si, we select the quadrilat-
eral that contains the triangle which lies on the right
of the directed segment cd (see Fig. 1).

Each two consecutive quadrilaterals Qi and Qi+1,
which are constructed by the way mentioned , share a
segment si+1. If we start from a segment of CS1 and
cross its related quadrilateral to get the next quadri-
lateral, we can construct a tour which completely lies
inside the union of all quadrilaterals, and also vis-
its all segments of CS1. This tour is a convex hull
for the ordered set CS1. The minimum tour, which
is denoted by CHS1, could be constructed in linear
time by unfolding method [2]. See Fig. 2. The pro-
cess mentioned in this section that computes MTOS
is called MTA.

Figure 2: Illustration of consecutive quadrilaterals
constructed and MTOS corresponding to CS1.

Lemma 3 For a set of n ordered segments, MTA
could compute MTOS in O(n) time.

Suppose that CSi and CHSi have been computed up
to the i-th iteration. Segments which are located in-
side CHSi will be removed form S. Considering seg-
ments which are located outside of CHSi, the convex
hull of their endpoints will be computed, and denoted
by Li. With a clockwise traverse on the boundary
of Li, segments which fall outside of Li and have at
least one point on the boundary of Li, will be added
to SLi in order; note that each segment will be added
to SLi only once. Regarding the location of Li and
CHSi, CHSi+1 could be computed in three different
cases as follows.

Case 1: if CHSi is inside Li, we will compute
intersection points of segments of CSi with Li, and
with a clockwise traverse on the boundary of Li, we
will add segments of CSi among those of SLi, and
CSi+1 will be computed. Further, convex hull of seg-
ments of CSi+1 will be computed by using MTA, and
denoted by CHSi+1.

Case 2: if CHSi is outside of Li (see Fig. 3), there
might exist some segments of CSi which intersect with

194



EuroCG 2010, Dortmund, Germany, March 22–24, 2010

Li at two points (s1 and s2, in Fig. 3, are such seg-
ments). We will take their farthest intersection points
from CHSi as the place they intersect with Li (points
p1 and p2 in Fig. 3). Each segment of this kind will
be added to SLi between the segments of this set
which their endpoints locate exactly before and after
the specified intersection point of such segment with
Li (in Fig. 3, s1 (resp. s2) will be added between
s6 and s15 (resp. s9 and s8)). Let sj , . . . , sj+m be
the segments of CSi which intersect with Li at two
points. The segment of CSi that is located before sj

(resp. after sj+m) and does not intersect with Li, is
denoted by sa (resp. sb), (in Fig. 3, sa = s3 and
sb = s4). It might be possible that sa = sb, but the
fact that CHSi is outside of Li ensures that at least
one of these segments exists.

By using an angular sweep line which is along sa

(resp sb), and rotates around the intersection point
of sa (resp. sb) and CHSi, the plane is swept in
counter-clockwise (resp. clockwise) direction; the first
vertex of Li that the sweep line intersects with it,
is denoted by vr (resp. vl), see Fig. 3. The chain
of Li that is located between vl and vr in a clock-
wise traverse, is called theupperchain, and denoted
by UC. Those segments of CSi which intersect with
Li at two points, will be removed from CSi, and
the segments of SLi that at least one of their end-
points is located on UC will be added to CSi be-
tween sb and sa in the order that their endpoints
are seen in a clockwise traverse on UC, (as an ex-
ample, in Fig.3; at first, CSi={s1, s2, s3, s5, s4} and
after adding the segments of SLi which one of their
endpoints is located on UC, CSi will be changed into
{s4, s14, s15, s1, s6, s7, s8, s2, s9, s10, s3, s5}). Now, we
have an ordered set of segments. By using MTA, we
could achieve an optimal convex polygon that inter-
sects the segments of CSi in order. CHSi+1 denotes
this polygon, and we set CSi to CSi+1.

Figure 3: Illustration of case 2.

Theorem 4 CHSi+1 is a convex polygon.

Proof. Let p (resp. q) be the intersection point of
sa (resp. sb) and CHSi. By Theorem 1, we know
that segments on UC should be visited in the order
they locate on UC, and by Lemma 2, it is clear that
the shortest path between p and q which visits those
segments, is a convex chain. This chain is denoted by
π. π and the chain which exists between p and q in
a clockwise traverse on CHSi, both contain p and q.
Therefore, we could construct a polygon T by using
them; see Fig. 4. T might have two concave vertices
at points p and q. Let q be the concave vertex, and
s (resp. r) be its previous (resp. next) vertex in a
clockwise traverse on T . Since sb has been visited
before the segments on UC, segment rs intersects sb.
Thus, by substituting rq and qs with rs in T , T still
intersects with all segments of CSi+1 and its concavity
in q is also removed. The same approach could be
taken for p, and T becomes a convex polygon which
visits all segments of CSi+1, as a result. According to
the fact that there exists a convex tour for visiting
ordered segments of CSi+1; CHSi+1, which is the
output of MTA, will also be convex. �

Figure 4: CHSi+1 that is computed by MTA is con-
vex.

Case 3: if Li intersects with CHSi, then seg-
ments which are not completely inside CHSi will
become important in computing CHSi+1; see Fig.
5. In Fig. 5, CSi={s1, s5, s6, s2, s7, s3, s8, s4, s9})
and SLi={s10, s11, s12, s13, s14, s15}. We will find seg-
ments of CSi that intersect with Li (in Fig. 5,
these segments are s1, s2 and s8). Segments of
this kind which their intersections with Li are out-
side of CHSi, will be added to SLi with respect
to their intersection points with Li, and they will
be removed from CSi; in Fig. 5, only s1 and s2

are such segments, and after such addition and re-
moval we will have CSi={s5, s6, s7, s3, s8, s4, s9} and
SLi={s10, s1, s2, s11, s12, s13, s14, s15}. We find inter-
sections of Li and CHSi. We call each part of Li

that is outside of CHSi, an exterior chain (denoted
by EC). It is clear that all exterior chains are convex

195



26th European Workshop on Computational Geometry, 2010

(in Fig. 5, two exterior chains are shown in ovals).
Considering each EC, let sa (resp. sb) be the seg-
ment of CSi which is visited immediately after (resp.
before) the intersection point of EC and CHSi by a
clockwise traverse on the boundary of CHSi (in Fig.
5, sa = s5 and sb = s9 for EC1, and sa = s7 and
sb = s6 for EC2). Considering each EC, regarding
its sa and sb we find a UC. Segments which have at
least one of their endpoints on this UC, are added to
CSi between sa and sb corresponding to the specified
EC. It could be easily proved that segments which
are outside of CHSi and have one of their endpoints
on EC, should be visited by CHSi+1 between sa and
sb corresponding to that specific EC (proof is simi-
lar to Theorem 1). So, they should be added to CSi,
between sa and sb. Adding these segments to CSi in
away that running MTA on CSi results in a convex
polygon, could be done via a similar approach as the
one used in case 2; with the only difference that in
this case instead of a polygon fallen outside of CHSi,
we have some ECs that segments of them which have
one of their endpoints on ECs, should be added to
CSi to achieve CHSi+1. Similar to the proof of The-
orem 4, it could be proved that CHSi+1, which is the
output of MTA, is also convex in this case, and we
set CSi to CSi+1.

Figure 5: Illustration of case 3.

We will repeat this routine until there are not any
segments of S outside of CHSi at all, and in the end,
we will report CHSi as the final result of the problem.

4 Analysis of the algorithm

In each iteration of the algorithm, Li should be com-
puted. Finding segments which are outside of CHSi

as well as computing convex hull of their endpoints
needs O(n log n) time in worse case. Regarding the
location of Li and CHSi, determining the correspond-
ing case could be done in O(n) time. In case 1, Ac-
cording to the fact that Li is convex and both SLi

and CSi are ordered, finding intersection of Li with

the segments of CSi and adding the segments to SLi

could be done in linear time. In case 2, Finding UC
and adding the segments which have one of their end-
points on it, takes O(n) time, and finally, in case3,
since the total number of segments which have at least
one of their endpoints on ECs, is the same as the total
number of segments of SLi which is O(n), and they
could be handled in O(n) time in a similar way as case
2. In each iteration CHSi + 1 should be computed
by running MTA on CSi. From the fact that CSi is
always a set of ordered segments, removal of unimpor-
tant segments from CSi could be done in O(n) time.
Constructing quadrilaterals and utilizing unfolding
method take linear time [2]. So, MTA runs in O(n)
time. Therefore, each iteration of our algorithm takes
O(n log n) time. Since in each iteration just one seg-
ments may involve in computing CHSi+1 in the worse
case, the algorithm runs O(n) times. Thus, the time
complexity of the algorithm is O(n2 log n) time.

In situations where two consecutive segments of
CSi are collinear, the quadrilateral could not be con-
structed, but handeling these situations could be done
by unfolding method, and whenever CHSi becomes
a line segment, it will change into a convex polygon
in next iterations. So, these special cases could be
handled easily.

5 Conclusion

We have presented the first polynomial time algorithm
to compute the convex hull of a set of imprecise points
which are modeled by n disjoint segments in the plane.
Our proposed algorithm runs in O(n2 log n) time. The
main idea of the algorithm is to find an order for vis-
iting the segments. We believe that this idea can also
be useful for computing the minimum perimeter con-
vex hull of a set of imprecise points which are modeled
by polygons instead of segments.

References

[1] M. T. Goodrich, J. S. Snoeyink, Stabbing parallel
segments with a convex polygon. In Computer vision,
Graphics and Image Processing 49, 152170 ,1990.

[2] F. Hassanzadeh. Minimum Perimeter Convex Hull
of a Set of Line Segments: An Approximation. Mas-
ter Thesis, Queen’s University Kingston, Ontario,
Canada, November 2008.

[3] M. Löffler, M. van Kreveld, Largest and smallest con-
vex hulls for imprecise points. Algorithmica, 56(2),
235269, 2010.

[4] H. Meijer, D. Rappaport. Minimum polygon covers
of parallel line segments. Department of Computing
and Information Science Technical Report, 90-279,
Queens University, 1990.

[5] D. Rappaport, Minimum polygon transversals of line
segments. Journal of Computational Geometry and
Applications, 5, 243256, 1995.

196




